2026世界杯_2004年世界杯 - 1606811.com

首页 > 王者荣耀世界杯 > 太阳位置

太阳位置

在一年当中太阳在不同的赤纬时,在天球上路径的变化。此处太阳在夏至和冬至出没的方位角是在纬度56°N观测到的,在地平线上标示的方位以北方为0°。

回顾

编辑

当北半球的春天时,太阳向北移动。它的赤纬到达最大值时,等同于地球的转轴倾角(23.44 度)[7]。在夏至时,它的赤纬值开始减少,一直到冬至,当赤纬值是负的最大值时(转轴倾角的负值)。这种变化造成季节的改变。

太阳的赤纬在一年中的变化图看起来像是一个振幅为23.44度的正弦波,但其中的一个瓣比另一瓣的长度多了几天,造成了些许的差异。

想像地球这个球体是在正圆的轨道上,以90度的轨道倾角,也就是自转轴在轨道平面上绕著太阳运转。在一年中的某一天,太阳会在北极点的正上方,所以他的赤纬是+90度。在未来的几个月,日下点以均匀的速度移向南极点,横过纬度的速率是恒定的,所以太阳的赤纬是线性的随著时间降低。最终,太阳的位置在南极点,赤纬-90度的正上方;然后,它开始以恒定的速度向北移。所以,从著个高度倾斜的地球看太阳的赤纬变化图,它不是正弦波而是锯齿状,±90度是它的极大值和极小值,在两个极值中间的变化是直线的线段。

现在假设转轴的倾斜减小,也就是赤纬的极大值和极小值减少,但仍然与转轴的倾角等值。因此,在图表上的形状不会像目前这样的尖锐,但是它们依然有像正弦波一样有类似的极大值和极小值。然而,当转轴倾角等于真正的地球时,最大值与最小值会比前述的正弦波更为明显。

真正的地球轨道是椭圆的。地球在一月初过近日点的速度,比在七月初接近远日点时的速度快。这使得太阳在一月时的赤纬值变化的过程比七月时快,在图形上,这使得极小值比极大值更为尖锐。但由于近日点和远日点发生的日期和冬至与夏至并不一致,最大值和最小值也就稍微有些不对称。而极值之前和之后的斜率变化也是不相等的。

因此,视太阳赤纬的图形是由几个不同的正弦波产生的。准确的计算牵涉到一定的复杂性,如下所示。

计算

编辑

太阳的赤纬,δ☉,是阳光与地球赤道面之间的角度。地球的转轴倾角(天文学家它为黄赤交角,ε)是地球的自转轴和垂直于地球轨道的线之间的角度。地球的轨道倾角会以数千年的时间尺度缓慢的改变,但它目前的值约ε=23°26',可以视为常数。所以太阳年复一年的周年赤纬变化可以视为是相同的。

太阳在至点时,阳光与地球赤道平面之间夹角度达到最大值的23°26',因此太阳的赤纬在北半球的夏至是δ☉ = +23°26',在南半球的夏至是δ☉ = - 23°26'。

在分点的时候,太阳的中心经过天球赤道,因此太阳的赤纬δ☉为 0 °。

在任何给定的时刻,太阳的赤纬可以利用下式来计算:

δ

=

arcsin

[

sin

(

23.44

)

sin

(

E

L

)

]

{\displaystyle \delta _{\odot }=\arcsin \left[\sin \left(-23.44^{\circ }\right)\cdot \sin \left(EL\right)\right]}

此处的EL 是黄道经度(本质上,是地球在轨道上的位置)。由于地球的轨道离心率不大,轨道可以视为是圆形,这样导致的误差不会超过1度。近似圆形意味著EL在分点时的值与在至点时的值相差90度,所以sin(EL)可以写成sin(90+NDS)=cos(NDS),此处的NDS是在12月的冬至点之后所经历的天数。使用同样的近似法,所以arcsin[sin(d)*cos(NDS)]的值接近d*cos(NDS),下面是频繁被使用的方程式,可以写成:

δ

=

23.44

cos

[

360

365

(

N

+

10

)

]

{\displaystyle \delta _{\odot }=-23.44^{\circ }\cdot \cos \left[{\frac {360^{\circ }}{365}}\cdot \left(N+10\right)\right]}

此处N是从年度开始所经历的天数,N=0是协调世界时1月1日的午夜12点(也就是日期部分的序号是从-1开始)。使用在(N+10)中的数值10,就是从冬至点算起接近1月1日的近似数值。这个近似的方程式在9月的秋分点时,误差大约在1.5度。正弦函数的值逼近本身的值,导致的误差达到0.26度,这让使用者很沮丧,因为不能在太阳能的领域中使用[2] The 1971 Spencer formula[8] (based on a fourier series) is also discouraged for having an error of up to 0.28 degrees.[9]。在方程式终止使用整数,而不使用小数点以下的位数调整协调世界时从1月1日午夜开始的时间,会额外再增加高达0.5度的误差。这可以发生在春分、秋分和所有邻近的位置。所以,上述方程式全部的误差可以高达2度,约为太阳视角直径的4倍,这完全取决于要如何的使用。

不要使用那两个近似的方程式计算赤纬,使用更多地球轨道的参数,可以更精确的估计EL[10]:

δ

=

arcsin

[

sin

(

23.44

)

cos

(

360

365.24

(

N

+

10

)

+

360

π

0.0167

sin

(

360

365.24

(

N

2

)

)

)

]

{\displaystyle \delta _{\odot }=\arcsin \left[\sin \left(-23.44^{\circ }\right)\cdot \cos \left({\frac {360^{\circ }}{365.24}}\left(N+10\right)+{\frac {360^{\circ }}{\pi }}\cdot 0.0167\sin \left({\frac {360^{\circ }}{365.24}}\left(N-2\right)\right)\right)\right]}

这可以经过对常数值的简化成为:

δ

=

arcsin

[

0.39779

cos

(

0.98565

(

N

+

10

)

+

1.914

sin

(

0.98565

(

N

2

)

)

)

]

{\displaystyle \delta _{\odot }=-\arcsin \left[0.39779\cos \left(0.98565\left(N+10\right)+1.914\sin \left(0.98565\left(N-2\right)\right)\right)\right]}

N是从协调世界时1月1日午夜开始经过的日数(也就是日期的序号减1),并且可以包含小数,调整地方时为一天中早一点或晚一点的时间。在N-2 中的数值2是从1月1日之后到达地球的近日点的数值。0.0167这个数值是地球的轨道离心率。离心率随时间的变化很慢,但目前相当接近这个数值,可以将

它当成常数来看待。这个方程式的最大误差小于 ±0.2度,而如果将数值10调整为历元与给定当年冬至的正确数值,而不是限定在12月22日的正午,最大误差将可以小于 ±0.003度。这个精确度可以和NOAA的高级计算相比较[11][12]。依据1999年Jean Meeus的演算,这个演算的精确度达到0.01度以内[13]。

(上面合理简化或精确的方程式配合上其它相关的方程式,可以计算均时差。相关的叙述请参见此处。)

更复杂的数学[14][15],除了使用一阶离心来改善对黄道经度的,它们也校正对时间变化非常微小的23.44度倾角。其它可能的修正还包括月球和地球共同绕著太阳的质心位置对轨道造成的影响。获得地球相对于中心的赤纬后,再取得观测者与地球中心的距离,进一步利用视差来校正。这种可以使误差小于0.0025度,而计算太阳中心位置的误差可以小于0.00015度。相较之下,太阳本身的是直径大约是0.5左右。

大气折射

编辑

前述的太阳赤纬计算中没有包括大气层对光线折射所造成的影响,尤其是太阳在低海拔的时候,太阳仰角的表观角度在海拔高度上的影响 [2]。例如,当太阳实际位于仰角10度时,它看起来似乎是在10.1度。依据太阳的赤经可以校正他的赤纬,然后用真实的赤纬计算太阳应有的方位角和高度角,这样可以修正太阳的视位置,还原它真实的高度[2][12][16]。




年审、换证可以提前多久办?交警:最长可以提前……
【钓鱼技巧】图解钓位选择,教你找钓位,菜鸟也能次次爆护